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We apply techniques developed for strings to the case of the spinless point 
particle. The Polyakov path integral with ghosts is used to obtain the propagator 
and one-loop vacuum amplitude. The propagator is shown to correspond to the 
Green's function for the BRST field theory in Siegel gauge. The reparametrization 
invariance of the Polyakov path integral is shown to lead automatically to the 
correct "trace log" result for the one-loop diagram, despite the fact that "naive 
sewing" of the ends of a propagator would give an incorrect answer. This type 
of failure of "naive sewing" is identical to that found in the string case. The 
present treatment provides, in the simplified context of the point particle, a 
pedagogical introduction to Polyakov path integral methods with and without 
ghosts. 

1. I N T R O D U C T I O N  

The Po lyakov  vers ion  (Polyakov,  1981; G r e e n  et al., 1987) o f  the  pa th  
in tegral  for  r epa rame t r i za t ion - inva r i an t  systems is at  p resen t  the most  useful  
m e t h o d  for  carrying out  s t r ing- theoret ic  compu ta t i ons  in a covar ian t  manner .  
A l though  it is a f i rs t -quant ized technique ,  it can be used  to l ea rn  abou t  the 
s t ructure  o f  covar ian t ly  second-quan t i zed  string theory ,  i.e., covar ian t  string 
field theory ,  s ince the  n-s t r ing corre la t ion  funct ions  o f  the  string field theory  
c o r r e spond  to f i rs t -quant ized Po lyakov  pa th  integrals  over  wor ldshee t s  with 
n b o u n d a r i e s  fixed in space t ime  (Wi t t en ,  1986; Kaku ,  1988). Now,  the  most  
na tu ra l  fo rmula t ion  o f  covar iant  str ing field theory  (Siegel ,  
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1986) makes use of second-quantized fields which are functionals, not only 
of the spacetime coordinates X ' ( t r )  of the string-at-a-single-time, but also 
of (first-quantized) ghost and antighost coordinates c(cr), b(o'). Therefore, 
the corresponding first-quantized path integral must also be a functional of 
ghost and antighost coordinates at the fixed boundaries of the worldsheet. 

In a recent series of papers (Ordrfiez et  ai., 1987a-c) we have developed 
techniques for introducing the required ghost dependence into the Polyakov 
path integral for bosonic strings, and have used these techniques to evaluate 
the propagators for open and closed strings in conformal gauge (orthogonal 
coordinates on the string worldsheet). The amplitudes thus obtained are 
found to correspond to the Green's functions (tree-level two-string func- 
tions) of the covariant field theory in the Siegel gauge (Siegel, 1986). The 
propagators themselves cannot be "sewn" together, but the "Schwinger- 
DeWitt proper-time" amplitudes (DeWitt, 1964; Brown, 1977), of which 
the actual propagators are the integrals, do sew together properly. However, 
this "sewing rule" fails when we attempt to tie together the ends of a single 
propagator to make a closed loop, since it gives, incorrectly, the trace of 
the propagator, rather than the correct result, the trace of the logari thm 
of the inverse propagator (Ord6fiez et al., 1987c). On the other hand, apply- 
ing the Polyakov prescription directly to the loop (Polchinski, 1986) does 
give the correct answer. 

The properties of the Polyakov path integral with ghosts which we 
have singled out for mention in the above paragraph seem not to be peculiar 
to strings, but rather, to be generic aspects of reparametrization-invariant 
systems quantized through the Polyakov prescription. In the present paper 
we apply the same methods to the quantization of the spinless relativistic 
point particle, and verify that these properties are indeed present there as 
well. [On the other hand, the fact that the correct modular integration region 
is not obtained when the logarithm of the closed-string propagator is sewn 
to make a torus (Ord6fiez et al., 1987c) is clearly a "stringy" feature with 
no point-particle analogue.] 

The point-particle propagator without ghosts has been computed ~ la 
Polyakov by Cohen et al. (1986), Govaerts (1988), and Henty et al. (1988). 
(See also Mannheim, 1986.) Here, as in Ordrfiez et al. (1987a-c), we follow 
the treatment of gauge fixing of Chaudhuri et al. (1987). We have attempted 
to present in detail aspects of the computations involving subtleties of a 
conceptual nature, while at the same time avoiding details pertaining only 
to subtleties of extreme mathematical rigor. Moreover, the complications 
due to Weyl invariance of the string action are, of course, absent in the 
particle case. It is thus our hope that the present paper can also serve as a 
pedagogical introduction to techniques used in gauge fixing the Polyakov 
path integral for strings (Weinberg, 1987). 
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2. T H E  P R O P A G A T O R  

The action for a spinless relativistic point particle of mass m is usually 
written as 

Io' S = m dr  [ - ~ ( T ) 2 ~ ' ( T ) ]  1/2 (2.1) 

The index /z in (1) is summed from 1 to D, the number of spacetime 
dimensions. X~' (T)  is thus a D-dimensional vector parametrized by the 
single real parameter T; ~" will always be taken to run from 0 to 1. The dot 
over X"(~ ") denotes differentiation with respect to ~'. 

We will work in a Euclideanized spacetime with the flat spacetime 
metric ~,~ -- diag(1, 1, . . . ,  1), so we will not bother about raising or lowering 
spacetime indices/~, v, but will write them all "up"  (on the other hand, we 
will pay careful attention to the indices, to be introduced shortly, which 
denote tensor type on the particle worldline rather than in spacetime, 
because the transformation properties of dynamical quantities under change 
of worldline coordinates will be crucial to the analysis). 

The particle worldline X~'(~ -) is a one-dimensional manifold with 
boundary, and r serves as a coordinate on this manifold. With respect to 
general coordinate transformations on the worldline (for which we will also 
use, interchangeably, the terms "reparametrizations" and "diffeomorph- 
isms"), i.e., 

T~ ? = ~(z) (2.2) 

X ~ ( z )  is a scalar and X~'(~') is a covariant rank-one tensor. Of course, the 
action S is also a scalar under reparametrizations. 

We introduce a covariant rank-two tensor on the worldline, the "metric 
tensor" gab(Z). The "worldline indices" a, b take on only a single value 
and thus really serve only to denote tensor character. Consider now the 
action 

Io Sp = �89 d~" gl/2(gabOaX"ObX~" + m 2) 

Io ( > _ I dq.gl/2 cgX ~ O X "  
_ ~ gab ~ .~. r~2 

OT O'r 

Io --2--  1 dr  gl/2(gabX"2t" q- m 2) (2.3) 

where 

g -= det gab = gab (2.4) 

gab = (gab)-1 = g-X (2.5) 
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If gab is treated as a dynamical field along with X ", then Sp is equivalent 
to S at the classical level; that is, it gives the same equation of motion for 
X ~, provided gab satisfies its equation of motion. The equation of motion 
for gab is 

8S 
- -  - 0 ( 2 . 6 )  

o r  

1 
gab(T) =~-~ X~ (~)X~(~) (2.7) 

Using (2.1) and (2.3)-(2.5), we see that, when (2.7) holds, Se = S. 
To obtain the quantum mechanical amplitude for a particle at spacetime 

point X~ to propagate to spacetime point X~, we perform the path integral 

(x~lx,) = j 
xy DgobDX 
xr Vcc exp(-Se) (2.8) 

The path integral in (2.8) is over all spacetime-vector-valued functions 
X ~ ( r ) satisfying 

X;'(0) = X~, X"(1) = X~ (2.9) 

and over all possible worldline-tensor-valued functions gab(r) (just a single 
function of ~, of course). Vac is a normalization factor, about which more 
will be said below. The path integrand is exp(-Se) instead of exp(iSe) 
because, as mentioned above, we are working in the Euclideanized theory. 

As was the case with the action S, the action Se is invariant under 
one-dimensional general coordinate transformations. Because of this, the 
path integration in (2.8) "overcounts" by an infinite amount, since for any 
given metric gab(r) and spacetime trajectory X~(r) included in the path 
integral there will also be included an infinite number of metrics and 
spacetime trajectories related to the given metric and trajectory by general 
coordinate transformations. 

This problem is essentially the same as the problem, in quantum 
electrodynamics or Yang-Mills theories, of overcounting by integrating over 
fields related to each other by gauge transformations. The solution we 
employ here is a version of the solution in the gauge-theory case (Faddeev 
and Popov, 1967; Abers and Lee, 1973). 

The key fact is the following: one can find a set of so-called "fiducial 
metrics," metrics not related to each other by general coordinate transforma- 
tions but having the property that every metric can be obtained from one 
of the fiducial metrics by a specific general coordinate transformation. (We 
will demonstrate shortly the construction of a particular fiducial set.) So, 
integrating over the space of all metrics is equivalent to: fixing a fiducial 
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metric; integrating over all ditteomorphisms, so as to cover the subspace 

of #,l tatl IsV di anmar0hi m  to the ch0 cn fidu ial m tri i 
then integrating over all metrics in the set of fiducial metrics. 

Let us denote, in a schematic fashion, fiducial metrics by the symbol 
and diffeomorphisms by the symbol r/. (The notation will be made more 

concrete shortly.) Then we can rewrite the right-hand side of (2.8) as 

I Dgab ID~,DXD~7 ,, D~Xexp(-Sp[X, gab]) = exp(-Sp[X, g, r/I) (2.10) 
V~c V~ 

One might think that the path integration in (2.10) still overcounts, since 
we are still integrating over all confgurations X~(z). But (2.10) is correct 
as it stands; see the discussion in the Appendix. 

In writing (2.10) as we have, we have implied that the measures for 
path integration ~ Dff and ~ DX can be defined in a diffeomorphism- 
invariant manner; otherwise, it would make no sense to perform these 
integrations after ~ D~7. In what follows, we will therefore be obliged to 
define these measures in a general-coordinate-invariant manner. (On the 
other hand, I Dr/ does in some cases depend on ~; e.g., in the loop 
computation in Section 5.) 

The  action Sp, being the integral over the worldline of a worldline 
density, is completely unchanged by diffeomorphisms: 

Sp[X, ~,, rl] = Sp[X, ~] (2.11) 

Integration over all diffeomorphisms 3 is precisely what we mean by Vcc : 

V~c = j D~I (2.12) 

Using (2.10)-(2.12) in (2.8), we obtain 

(X, IXf )= f D~ DX exp(-Sp[X, ~]) (2.13) 

To implement this concretely, we must find a specific set of fiducial 
metrics. Although the space of metrics (i.e., the space of functions of 
~-~ [0, 1]) is infinite-dimensional, the set of fiducial metrics is one-dimens- 
ional, i.e., parametrized by a single real parameter, which we denote by A, 
and refer to as the "Teichmuller parameter." We are free to choose the 
functional dependence of the fiducial metrics on h; the most convenient 
choice is 

g a b = h  2, O < h  <O0 (2.14) 

Sin general, we should include in (2.12) a factor of  the square root of  the determinant of  a 
metric on the space of diffeomorphisms; however, in the coordinates (2.23), (2.40) which we 
will use for the space of diffeomorphisms, this factor is unity. See Ord6fiez et al., 1988. 
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s o  

ff~b ___ ,~-2 (2.15) 

-= det gab = X 2 (2.16) 

We note that the fiducial metric (2.14) is independent of  position r on the 
worldline. A is just the geometrical length of the worldline 

Io' ,~ = d z ~  1/2 (2.17) 

manifestly unchanged under change of worldline coordinates. 4 
Since the space of  metrics is infinite-dimensional while the space of 

fiducial metrics is one-dimensional, the space of  general coordinate transfor- 
mations (which generate the entire space of  metrics starting from a fiducial 
set) must be an infinite-dimensional space. This is in fact the case; writing 
the transformations (2.2) as 

~-, ~(r = r +  n~ (2.18) 

we see that we can parametrize general coordinate transformations by the 
(infinite-dimensional) space of  functions r/~(z). 

We view the coordinate transformations (2.18) as active transforma- 
tions, mapping points on the worldline to different points on the worldline. 
For infinitesimal transformations, a is a worldline vector field. The actions 
of such transformations on the worldline scalars X ~ ( r )  and the worldline 
tensors g~b(r) are, respectively, 

x ~ ( ~ ) - ~  . r  = x "  0") + n ~ 1 7 6  

= X~'(r) + r/" (~')X(r) (2.19) 

gob(r g~b(~) = g~b(~) + vow(~)  + v~n~(~) 

= g,b(l")  + 2V,~b (~') (2.20) 

(V, is the one-dimensional covariant derivative; we will not need its explicit 
form.) These active transformations are referred to as "Lie dragging" 
(Schutz, 1980; Wald, 1984; Weinberg, 1972). 

From (2.19) we see that, if ~?~ does not vanish at the ends of  the 
worldline, it generates physical motions of  the ends of  the worldline. 
However, the amplitude (2.8) is a path integral over worldlines with f i x e d  

4For every g.b(~'), there  is a u n iqu e  general  coord ina te  t r ans fo rma t ion  taking gab(z) to 
•b  = 3.2 = [~1o d'r(gl/:)] 2" Specifically, gab = (dT"/d'r')Zg,,b( "r ) = (da"/d~')-2gab('r), where  7'(r = 
[~1o d~(gl/2)l-~ Jo dTrgU2" We see tha t  the  r equ i r emen t  o f  fixed endpo in t s  is satisfied: r ' (0)  = 0, 
r = 1. So the  set  o f  metr ics  (2.14) is in fact  a fiducial set. 



Polyakov Point Particle with Ghosts 9 

endpoints. The reparametrizations over which we want to integrate are thus 
generated by vector fields satisfying 

r/"(0) = r/a(1) = 0 (2.21) 

However, not all vectors satisfying (2.21) generate new metrics from the 
fiducial ones. From (2.20) we see that we want only vectors satisfying 

Va~b(~') # 0 (2.22) 

for at least some z. 
So, the space of metrics over which we want to path integrate has as 

coordinates the Teichmuller parameter 2~ and the vectors ~Ta(z) satisfying 
(2.21) and (2.22). Instead of r/a(~'), we can equivalently use 7/,,, the 
expansion coefficients of ~/~(~-) in terms of some suitable set of eigenfunc- 
tions 0~(z) :  

~l"(r) = E  7/,,~0~,(z) (2.23) 
r n  

where the eigenfunctions satisfy 

~O~,(0) = qJ~,(1) = 0 (2.24) 

V,~b,, (z) # 0 (2.25) 

so that r/a(z) automatically satisfies (2.21) and (2.22). The integral "over 
all metrics" is thus 

Dg = dh [I' d~)~ tz(h, n) (2.26) 
/r /  

where the prime is a reminder to delete from the product values of m 
violating (2.25). tz(h, 7) is an integration measure in the space of metrics. 
If we were dealing with integration over the usual type of  manifold, we 
would take/z  to be the square root of the determinant of the metric tensor, 
evaluated in a basis corresponding to the coordinate system we are using. 
We will therefore construct a metric on the space of metrics g~b(z)--a 
"supermetr ic"--and use the square root of its determinant for the measure. 

A metric, in any space, is a symmetric bilinear map from tangent vectors 
to numbers. In addition to the coordinates (h, r/,,) we have already 
described, g~b(~') itself serves as a coordinate on the space of metrics. To 
obtain the components of a tangent vector in the space of metrics, we 
consider a parametrized curve in this space, and use the coordinates g~b(~'). 
Denote the parameter by a subscript a or/3 and the curve by g~b(z),~ ; the 
components of  the tangent vector at the point g,b(~')~0 are 

d 
V.b (~')[g~o](~ ~ d--'da I . . . .  g.b(~)~ (2.27) 
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That is, V points along the curve we have parametrized by a [this is indicated 
by the subscript (a ) ]  at the point where the parameter has the value ao, 
that is, the point gab(r),~ o. 

The most general supermetric which is only a function of  the gab(r) 
(and not their derivatives) and which respects one-dimensional general 
coordinate invariance is 

aab'ca(Tl, 7"2) = g'/2('ra)[(gab('r l)g cot ('7"1) "1- C g ~ ( ~ , ) g  bd ( r , ) J 6 ( z ,  - r2)  

= (1 + C ) [ g ( z , ) ]  -3/2 8(I',  - ~'z) (2.28) 

using (2.4) and (2.5). C is an arbitrary constant, which we will, for notational 
convenience, set to zero. (This is just an adjustment of  the overall scale of 
the path integral.) The reparametrization-invariant inner product is 

L L ( v( .) ,  G ~ ) )  = d~', cl~2 V.b('r,)(~)G~ ~)  Vc.(~2)(~) 

= ar Vob(~')(.)[g(~')]-3/2Vcd(~)(~) (2.29) 

As discussed earlier, we prefer to use the coordinates (A, rim) rather 
than g ,b (r ) ,  so as to be able to separate out the redundant integration over 
metrics related by ditteomorphisms; so we need the components of the 
supermetric in the (& ~Tm) coordinate system. Let us first obtain these 
components at the point A =Ao, ri,~ = 0  for all m. Since rim =0,  g,b(~)  is 
the fiducial metric, 

g~b(Z)[a =Xo,, = o = A~ (2.30) 

A vector pointing in the direction of increasing A has components 

= 0 ~  = 2Ao (2.31) 
O , 4  A ~AO,~Trn : 0  

Using (2.20), (2.23), and (2.30), we see that a vector pointing in the direction 
of increasing rim is 

, , , agab I 2 b . . . .  [ 2 OaObm(r) 2AoO.~b,.(r)  (2.32) 
v~b~')(m) (?rim X=Xo.n~=o 

(At ~7-, = 0 we can replace covariant derivatives by ordinary derivatives, 
since the fiducial metric is a constant.) Choose the ~0~ to be eigenfunctions 
of the one-dimensional Laplacian, 

a~o"q,~,(r) = -Am0~n('r) (2.33) 
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and to satisfy the reparametrization-invariant normalization condition 

f ~ d'r g i/2qJ~ba, = 8m, (2.34) 

Using (2.24) and (2.29)-(2.34), we find that, at h = ho, 7/,, = 0, 

G~A = (V(x), GV(x)) = 4ho' (2.35) 

Gx,, = G,,A = (V(a), GV(,,)) = 0 (2.36) 

G,,,, = (V(,,,), GV(,)) = 8,,,A, (2.37) 

To obtain vector fields and supermetrics at other points in the space of 
mettles, i.e., those points where ft,, ~ 0 for some m, we perform diffeomorph- 
isms on the V's and G's; however, the inner product (2.29) is unchanged 
under diffeomorphisms. So the expressions (2.35)-(2.37) for the components 
of G are valid at all points in the space of metrics. Since G is diagonal, 
we obtain from (2.35)-(2.37) 

/z(X, n) = ~ (h )  --- (det' G) ~/2 = 2A -1/2 [I' AI~/2 (2.38) 
m 

Using (2.8), (2.10), (2.11), (2.26), and (2.38), and dropping irrelevant overall 
constants (a practice we will employ with no further warning throughout 
the rest of this paper), we obtain 

L VGc J D X  exp(-Sp[X, ~]) 
i 

(2.39) 

In general, we cannot at this point simply set the quantity in square brackets 
in (2.39) to one, since VGc is the volume of all diffeomorphisms, whereas 
the numerator is an integral over all diffeormorphisms except zero modes, 
i.e., those modes violating (2.25). (Nor can we simply start over using a 
normalization factor V~c = ~ [ I "  dT/~,; this would violate reparametrization 
invariance. The different eigenfunctions ~0~,, including any zero modes, are 
mixed up among each other under diffeomorphisms; hence a factor of V~c 
is not a one-dimensional-diffeomorphism invariant.) 

However, in the case we are currently considering, there are no zero- 
mode qJ~,, because of the boundary condition (2.24). With the normalization 
(2.34), 

~//~n = 21/2A-3/2 sin(~rm~') (2.40) 

So, in this particular case, it happens that 

IH'd~q~=I~d~7:=VGc (2.41) 
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and (2.39) becomes 

fo ~ (X, IX,)= dA A-1/2[]- I' Am} DX exp(-Se[X, ~]) (2.42) 
i 

We next perform the path integral over X. Using (2.14)-(2.16) in (2.3), 
we obtain 

S, =1 ~f dr ( ) t - lx~ ' tz  + ~.m2) (2.43) 

Following the usual path-integration method (Feynman and Hibbs, 1965), 
write X~(r) as the sum of a classical part ) r  and a quantum part X~'(r): 

X~'(r) = .,~" (r) + 2~" (r) (2.44) 

) ~ ' ( r )  is the solution to the classical equations of motion, 
d 2 _ 
~-22 X ( r )  = 0  (2.45) 

interpolating between the initial and final configurations 
X~'(0) = X~, X~'(a) = X~ (2.46) 

Since the value of an integral from - m  to +oo will be unchanged if we 
redefine the integration variable by adding a constant to it, we can shift 
X"(r) in the path integral by . ~ ' ( r )  at each point r: 

f D X ~ I D f (  (2.47) 

From (2.9), (2.44), and (2.46), we see that X'~(r) satisfies 
X~'(0) = X~'(1) -- 0 (2.48) 

If we expand X~" (r) in terms of eigenfunctions of  the worldline Laplacian, 
=X X.f,(r) (2.49) 

n 

where 

aao~f~(r) = - A , f , ( r )  (2.50) 

IodrAfm(r)f,(r) = 6,., (2.51) 

the eigenvalues A, in (2.51) will be the same as the vector eigenvalues in 
(2.33). Using (2.43)-(2.51), we obtain 

DXexp(-Sp)=exp(-S) ff] [I' dXT~exp - 5 ~  A . . . .  
i J,~=l m 

[We could have put in a measure factor with the - ~  integration in (2.52), 
as we did in the g~b integral: 
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with # x  the square root of  the determinant, in the f,,(~-) basis, of  the 
X-supermetric y, 

y(r,  r ' ) ~  = c o n s t  �9 g l / 2 c $ ( r  - "r ' )  r /~o  (2.54) 

Using (2.51), however, we can see that y,,,, will be independent of A; thus 
~x = (det y,.,,)1/2 would contribute an uninteresting overall multiplicative 
constant to the amplitude.] 

The quantity in the first exponential in (2.52) is the action (2.43) 
evaluated at the classical path X~" (z): 

g = 1 ( x ~ -  x ~ ) ( x ? -  x~)  + xm~ (2.55) 
2A 2 

The primes on the product and on the sum in the second exponential in 
(2.52) are reminders that the terms with A, = 0 should be deleted. Again, 
this is an irrelevant reminder in our present computation; as mentioned 
previously, the eigenspectrum of X~'(r) is the same as that of ,/~(r), and 
thus has no zero mode. The eigenfunctions are [using (2.48) and (2.51)] 

f,,(r) = 21/2A-1/2 sin(~nr), 

while, using (2.15), 

OaOa = /~--2 02/0,/.2 

SO 

n = 1, 2 , . . .  (2.56) 

(2.57) 

A, = ~r2n2/A2, n = 1, 2 , . . .  (2.58) 

Using (2.52), (2.55), and (2.58) in (2.42) and performing the Gaussian 
integrals (Feynman and Hibbs, 1965) over the ~ '~ (recall that ~ runs from 
1 to D),  we obtain 

f 0  ~ co 2 _ . 2 \  1/2 / co 2 2 
\,,=1 h 2 ] \ ,=1 h 2 ] exp ( -S )  (2.59) 

We evaluate the infinite products in (2.59) by zeta-function regularization 
(Brink and Nielsen, 1973; Hawking, 1977; Candelas and Raine, 1977): 

(arnb) = 1~ explog(am b) 
m=l m=l  

=exp  ~ ( l o g a + b l o g m )  
ttl=l 

= exp(log a m=l~ l + b  ,.=1~ log m)  

( ) = exp log a .  lim m -~ - b- l i r a - -  Y~ rn -s (2.60) 
s~O m=l  s--)O ds m=l 
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The sums in (2.60) converge, provided the real part of s is sufficiently large; 
the first, to the Riemann zeta function, 

~'(s)= f m -s (2.61) 
m = l  

and the second to its derivative r = (d/ds)r These functions, in turn, 
are defined at s = 0; in particular, 

~'(0) = -�89 r = _1 log (2~) (2.62) 

Using (2.61) and (2.62) in (2.60), we obtain 

(am b) = a-l/2(2~r) b/2 (2.63) 
m~l 

So, finally, (2.59) becomes 

o~ ~" Am21 
(X f [X , )= fo  d A A - D / 2 e x p [ - I  ( x ~ - x ~ ) ( X ~ - X y ) - - - ~ - - J  (2.64) 

3. G H O S T S  AND BRST FIELD THEORY 

As mentioned earlier, the fields in covariant string field theory are 
functionals not only of the spacetime coordinates X~(~'), but also of 
Grassmann-valued (anticommuting) ghost coordinates. To establish the 
connection between the first-quantized formalism (Polyakov path integral) 
and the field theory, ghost dependence must also be introduced into the 
former. This has been done in Ord6fiez et al. (1987a-c); here we illustrate 
the technique in the (calculationally much simpler) case of the point particle. 
We first return to equation (2.59), and recall that the term 

,rl.2 m a 1 1/2 

is the volume factor corresponding to integration over diffeomorphisms: 

AFp = (det Gmn) 1/2 (3.2) 

It thus corresponds to the Faddeev-Popov factor in gauge theories and, as 
in gauge theories, it can be represented as a Grassmann path integral. 

Define the ghost action 

Io' S~h -- -- dz  [g(7)]l/2ca('l')Vbbab(7 ") (3.3) 

ca(z) is a worldline vector, bab(~') a rank-two worldline tensor. Both are 
anticommuting c-numbers (Grassmann variables). Sgh is unchanged under 
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the action of diffeomorphisms ~ ( r ) ,  and the same argument previously 
applied to other factors in the path integrand applies here as well. That is, 
if we denote by c,, b, the ghosts subjected to diffeomorphisms generated 
by r/a('r), then 

Sgh[c,7, bn, g] = S~h[%, b,7, ~(X), n] = Sgh[C, b, ~] (3.4) 

Using (2.14)-(2.16), (3.3), and the final member of (3.4), we have 

S g  h = _ / ~  -1  J~ d'r c" Oo.r b,,b (3.5) 

Impose the boundary conditions 

ca(0) = c"(1) =0 (3.6) 

o b,~b ('r)l o = 0 b,b(r)la = 0 (3.7) 
O'r or 

and expand c"(r) and bab(~r) as 

c~(r)=,=,Y~ [A3] sin(zrm')c, (3.8) 

b~b('r) = ~ [h321-~m'~ 1/2 cos(~m')b, (3.9) 
n=O 

Using (3.5), (3.8), and (3.9), we obtain 

Sgh = ~ c.b. (3.10) 
n = l  

The usual rules of Grassmann integration (DeWitt, 1984; Ramond, 1981) 
give 

AFp "~-  f Dc Db e-S~" (3.11) 
J 

where 

f D c = f  ~[ dcm (3.12) 

[The tilde in (3.13) is a reminder that the m = 0 mode is not included even 
though allowed by the boundary condition (3.7). Sgh is independent of b0, 
so, including an integral over bo would cause the path integral on the 
right-hand side of (3.11) to vanish.] 
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We could use the representation (3.11) of Avp in the expression (2.59) 
for (XflXi),  but this would just give us another way of describing the same 
amplitude. We want an amplitude which depends on the values of ghost 
fields at r = 0 ,  1, in addition to the values of X"(~r) at the endpoints. So 
we must modify equation (3.11) so that, instead of integrating over all 
possible b's and c's, we keep the end values fixed. Since we have already 
imposed (3.6), we will require 

b~b(O) = b,, bab(1) = by (3.14) 

and define a new path integral Ag h by inserting ~ functions to enforce (3.14) 
in the path integral (3.11): 

Agh(bf, b~)=- f Dclgb<5(bab(1)-by) 6(b~b(O)-b,) e -sh (3.15) 

With regard to Grassmann integration, the Dirac delta function of a variable 
is the variable itself. Therefore, 

Agh(bf, b,) -- ~ Dc I)b [bah(l) -- bf][bab(O) - b~] e-Sg ~ (3.16) 

However, a nonvanishing term in (3.16) must include an equal number of 
c,~ and b, factors; so, keeping in mind (3.8) and (3.9), 

Agh(bf,  b,) = bfb i j Dc L)b e-Sg h = bfbiAFp (3.17) 

Finally, we define the BRST propagator (transition amplitude with 
ghosts) by substituting Agh(bf, b~) for Am, in (2.59): 

fo (Xf, bflX~, b,) = dh A-1/ZAgh(bf, bi) 1 h 2 ] exp(-S)  

= bfb,(XflX,) (3.18) 

Clearly, if we integrate over by and b; we recover the original amplitude: 

f db, dbf (xf, bflX,, b,)= (XflX,)  (3.19) 

So, for the particle, the propagator with ghosts is related to the propa- 
gator without ghosts in a rather trivial manner. In the case of the string, 
the analogous relation is less trivial and the corresponding computation far 
more involved (Ord6fiez et al., 19873). 

Siegel (1986) has described a BRST field theory for the point particle. 
In our notation, the second-quantized field in this theory is qb(X, b) or, 
Taylor-expanding in b, 

r b) = 6 ( X )  + bda(X) (3.20) 



Polyakov Point Particle with Ghosts 17 

The theory is invariant under gauge transformations &b = 0, 6~ = arbitrary, 
so we can always choose a gauge ("Siegel gauge") in which 0 = 0  
(equivalently, b ~  = 0). Then a two-point function in this gauge will have 
the form 

(((~( Xf:, bf )ffP( Xi, b,)))= bfb,(( 49( Xf )qb( Xi) )} (3.21) 

(Double brackets denote second-quantized expectation values.) The 
"reduced two-point function" ((~b (Xy) 4~ (Xi))) is the inverse ofA + m 2, where 
a is the D-dimensional Laplacian, (O/OX'*)(O/OX '~) = A: 

1 
((,~( X+ )6( X,)))- 

(A+ mb(Xs, X,) 

f dDk exp[ ik ' (X~-X~)]  
= (2~r)D/2 k,k• + m2 (3.22) 

But this is precisely equal to (XyIXi) of equation (2.64) (see, e.g., Cohen 
et al., 1986). We conclude that the Polyakov path integral for the point 
particle gives field-theoretic amplitudes in the Siegel gauge: 

(Xf, bf[X~, b,)= bfb~((qb(Xf )c~(Xi)}} (3.23) 

The single Grassmann parameter b here plays the role of the antighost zero 
mode in the open string. 

4. SEWING 

By "sewing," we mean the process of constructing the path integral 
over a single geometrical region from the path integrals over smaller pieces 
which make up the original region. This process is quite familiar in the 
nonrelativistic case; the path integral for a particle to go from position X~ 
at time t 1 t o  X 3 at t3 is the product of the path integrals to go from Xa at 
tl to X2 at an intermediate time t2, times the amplitude to go from X2 at t2 
to X3 at t3, integrated over all possible X2. That is, 

(X3, t3 ]Xl, tl} = f dX2 (X3, t3 IX2, t2}(X2, t2 [Xl, tl} (4.1) 

In the relativistic case, the naive analogue is certainly not true: 

(X3 I x ,)  3~ I d OX 2 (X3 [ X2)(X2 I Xl) (4.2) 

where X = (X, t). The amplitude which can be sewn in this manner is the 
"Schwinger-DeWitt" amplitude, the integrand of (2.64): 

2 Arrt2 (Xf'A [Xi' O}= A-D/2 exp[--~A (Xi-Xf ) - -T]  (4.3) 
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We have written the left-hand side to (4.3) this way because it can be 
interpreted as proportional to the amplitude for a free nonrelativistic particle 
of unit mass to propagate, in time iA, from "position" X f  = (Xi, ti) to 
"position" X~ = (Xy, ty) (DeWitt, 1964; Brown, 1977); up to X- and A- 
independent factors, 

(Xf, A ,Xi, O) = [exp(-~-~)  ] (Xfl exp(-AI3I),Xi) (4.4) 

where /4 is the first-quantized Hamiltonian operator for this fictitious 
particle, 

1 0 0 1 A (4 .5)  
121 - 20X ~ OX ~ - 2 

and the IX) are the Schr6dinger-picture D-dimensional position eigenstates. 
This amplitude satisfies a relation analogous to the nonrelativistic relation 
(4.1), 

(X3,/~1 "]- A2 [ Xl, 0) : I d~ A2[XI,0) (4.6) 

as can be seen using (4.4) and the completeness relation 

f d~ Ix)(xl = 1 (4.7) 

5. THE VACUUM AMPLITUDE 

In second-quantized field theory, a quantity which is often of impor- 
tance is the vacuum amplitude, the trace of the logarithm of the second 
variational derivative of the second-quantized action (see, e.g., Abers and 
Lee, 1973; Ramond, 1981; Ryder, 1985). For a scalar field, correspond- 
ing to a spinless point particle, this second variational derivative is 
(A+mZ)(x2, Xl) and the vacuum amplitude is 

Avac=trlog(A+m2)= f dDXIog[(A+m2)(X,X)] (5.1) 

This is usually represented, in terms of Feynman diagrams, as a closed 
loop. This picture might suggest that Avao can be obtained simply by sewing 
together the ends of a single propagator; that is, performing the first- 
quantized path integral over closed loops going from X ~ back to X ~, then 
integrating over X ~. This is, of course, incorrect, since such a procedure 
would give tr(A+ m2) -1 = ~ d~ [(A+ m2)-l(X, X)] rather than (5.1). 
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What is remarkable is that, if one performs the path integral over closed 
loops directly, one does obtain (5.1). The analogous property has been 
shown for the corresponding closed-string diagram, the torus (Polchinski, 
1986; Shapiro, 1972); here we show that this is not a peculiarity of  string 
theory, but occurs as well in the particle case. 

As in (2.8), 

I Dg.b Dx 
(loop) . . . . .  exp( -Sp)  (5.2) 

closed VGC 
loops in X 

The treatment of the integration over worldline metrics is the same as for 
the propagator, except that the boundary condition (2.21) on diffeomorph- 
ism vector fields ~a(7) is replaced by the weaker condition of periodicity, 

n"(0) : r/a(1) (5.3) 

Therefore, there are normal modes proportional both to cos(27rmA), m = 
0, 1, 2 , . . . ,  and sin(2~-mA), m = 1, 2 , . . . .  The eigenvalues corresponding to 
both of these are 

A,, --- (2~rm/a) 2 (5.4) 

There is a zero mode; the cosine mode with m = 0 violates (2.25). Using 
the letter M to indicate both the cosine modes and the sine modes, and 
denoting the zero mode by M = 0, the analogue of  equation (2.39) for the 
propagator becomes 

I0 ~ [J' 11~ d'q ~] ( ~ ,  ~ 2 )  I DXe_SP (loop) = dX L -Voc 'J A-1/2 
closed 

loops in X 

[ 1 1~-1/=/~ 2r~m~ 2 f 
loops in X 

since Voc = S I'IM d ~ ,  including M = 0 [see discussion following equation 
(2.39)]. The normalized M = 0 eigenfunction is a -3/2 [see (2.34)], so the 
change in ~Ta(r) due purely to a change in the mode ~?g is 

d~qa(r)zv =/~--3/2 dng (5.6) 

o r  

dr/• = a 3/2 d~q~(r)zM (5.7) 

[Clearly, dr/~(r)zM is independent of r, since a and ~7~ are.] 77 ~(r) is defined 
with no reference to the fiducial metric (Lie dragging is a metric-independent 
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concept.) So, if we use (5.7) in (5.5) to write 

~o h 2 ( ~  2,trine2 
( loop)= /o  dh - \ , ,=l--h---/ fclose,~ DXe-S" (5.8) 

loops in X 

we have left out a factor, S dr/a(r)zM, which is independent of A; but we 
have been dropping such factors all along. (The reason for our focus on 
the a dependence of the integrand will be discussed at the end.) 

Modifications similar to those just encountered in the r/a integration 
are found to occur in the X ~' integration for the loop. In contrast to the 
propagator calculation, we are here integrating over paths which are con- 
strained only by the requirement of periodicity, 

X•(0) = X~(1) (5.9) 

The "classical paths", i.e., paths satisfying (2.45) as well as (5.9), are all 
functions of the form X~(r) = const. Note, however, that these paths cannot 
simultaneously satisfy the classical equation of motion (2.7) for gab. Rather 
than expanding about a classical path, we can simply do the path integral 
over X~'(r) directly without making the separation (2.44) into classical and 
quantum parts. As we did with r/n, we expand the function X~'(r) in a 
full-range Fourier series, with normal modes proportional to cos(2~rmA), 
m = 0 ,  1 , . . . ,  and sin(2~rmA), m =  1 , 2 , . . . .  Again using the index M to 
denote all the modes, with M = 0 corresponding to the m = 0 cosine mode, 
and with the prime on sums and products indicating deletion of the zero 
mode, 

f DX e -s~ 
closed 

loops in X 

e x P L - r h m 2 1 ' ( ~ - )  2X~X~ -'2~ 

D The factor I-L,=, S dX~ is an infinity proportional to the volume of D- 
dimensional spacetime. It is to be expected, since the closed loops over 
which we are summing can start and end anywhere. However, the coefficient 
of the zero mode is h dependent; in fact, the normalized zero eigenmode 
is A -1/2 [see (2.51)]. So, the change in X"(r) due to a pure zero-mode 
deformation is 

dX~(r)zM = a-1/2 dX~ (5.11) 
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or 

d X ~  = )t 1/2 dX"(r)ZM (5.12) 

Using (5.10) and (5.12) in (5.8), we find 

IO ~ (~o ~.~)2--2D fi f (loop} = dh A -z+D/2 l-[ e -~'''2/2 dX"(~-)ZM (5.13) 
km=l /z=l 

The factor [ID=~ ~ dX'~(r)zM is A independent, so it can be taken outside 
the ~t integral sign and ignored, along with the many factors of (2r ~, etc., 
we have dropped along the way. Applying the zeta-function regularization 
(2.63) to the infinite product in (5.13), 

f0 o (loop} = dA A -~-D/2 e -~m2/2 (5.14) 

We should remind the reader that, although the A-factor gymnastics 
we have performed in the presence of zero modes were compulsory exercises 
as a consequence of the normalizations we chose for the eigenmodes, these 
particular normalizations were chosen, not out of love of exercise, but, 
rather, because we defined our path integral measures in a reparametrization- 
invariant manner. And we had to define them in a reparametrization- 
invariant manner so as to be able to extract the infinite factor Vcc. Any 
other reparametrization-invariant definition of the path-integral measures 
would have led to the same A dependence of the final integrand. 

How does (5.14) compare with "sewing" the propagator? From (2.64) 
or (4.3), 

tr(X, lXf)= f dDx (xlx)= f dDX fodA (X,A'X,O) 

io o = d l  ~-D/2 e-~,,,,2/2 (5.15) 

Or, using (2.64) and (4.3)-(4.5), 

I Io t r ( X i l N )  = d D X  dA (Xle-(*/2)(~+"2)lX) 

1 X 

= ~ d~X [(~+ m2)-~(X, X)] (5.16) 

[See, e.g., Dirac (1958) regarding matrix elements of operators.] From the 
representation of equation (5,15) it is clear that {loop} in (5.14) is a different 
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quantity, due to the extra factor of A-1 in the integrand. What is the operator 
representation of (loop), corresponding to the representation (5.16) of 
tr(Xi [Xf)? We have 

log[(A + m2)(X, X)] = dA A-i e-~(a+m2)(x,x~ 

fo o 

= d,~ ,~ - l (x ,  a Ix ,  o) (5.17) 

using (4.4) and (4.5). If  we next use (4.3) in the above, we obtain 

fo log[(A + ma)(x, X)] = dA A -1-~ e -"m2/2 (5.18) 

Comparing (5.18) with (5.1) and (5.14), we see that the Polyakov path 
integral over loops has indeed given us the field-theoretic vacuum amplitude: 

(loop) = Ava c (5.19) 
D 

[In fact, the same infinite constant, H~=I ~ dX~M = volume of spacetime, 
which we discard in computing (loop), must also be removed when evaluat- 
ing A . . . .  since the integrand on the right-hand side of (5.1) is explicitly 
independent of X ". 

The reader may well object to all this to-do regarding the "equality" 
(5.19) of two quantities each of which is computed with total disregard of 
so many factors. Indeed, (5.19) is divergent, due to the behavior of the 
integrand at A = 0 (ultraviolet divergence). To the extent that (5.19) makes 
sense in and of itself, it is in the equivalent dependence of the left- and 
right-hand sides on the mass m. (This in turn is controlled by the A 
dependence of the respective integrands; hence our focus on that aspect of 
the computation.) In string theory, the relation corresponding to (5.19), 
and also the actual value of the vacuum amplitude, are of central importance; 
it is interesting to see that this relation, as well as the other relations obtained 
in this paper, hold as well for the point particle. 

APPENDIX 

In equation (2.10), we have S D~ DX DT1 rather than, say, S D~ DP(D~7, 
[the set of )~"(~') being the set of X"('r) not related by ditteomorphism.] 
That is, in writing (2.10), we are claiming that the space of ordered pairs 
(gab(~'), X"(~')) not related by diffeomorphisms is isomorphic to the space 
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of ordered pairs of the form (ff~b(r), X"(z)),  where g~b(~') are metrics not 
related by diffeomorphisms but where the X " ( r )  are arbitrary. 

The situation here is analogous to a system consisting of two mass 
points connected to each other by a spring, but subject to no external forces. 
Let us use the term "gauge group" to refer to a group G of transformations 
which leaves the energy of the system invariant. For G, choose the group 
of translations. The elements of G are vectors a. The configuration space 
Q of the system is the space consisting of the ordered pairs of the position 
vectors of the two mass points (ql,q2). The entire configuration space 
includes configurations related by G, e.g., (ql,q2) and (q~,q~)= 
(ql + a, q2 + a). The space of configurations not related by gauge transforma- 
tions, which we will call (~, is isomorphic to the space of ordered pairs with 
one element, say the first, fixed, and the second arbitrary: 

6 = {(qfixed, q)} (A1)  

This is true because two conditions are met: every element of Q can be 
obtained from some element of (}; and no element of Q can be obtained 
from more than one element of Q. 

To prove that the first condition is met, let (ql, q~) be an arbitrary 
element of Q. Since the second entry of an element of Q is arbitrary, one 
such element is (qllxed, q3), where q3--- q2+qfixed--q] .  Then (ql, q2) can  be 
obtained from (qnxed, q3) by the gauge transformation (translation) a = 
ql -- qfixed, 

(ql, q2) = (qfixed + a, q3 + a) (A2) 

If we had taken Q to be the space of ordered pairs with both entries fixed, 
i.e., the sing~ pair of points (qnxed, q~xed), we could not obtain all elements 
of Q from Q using gauge transformations, since not all elements (ql, qx) 
of Q are of the form (qnxed+a, q~xed+a). (Translations move both mass 
points by the same amount and do not affect their relative position.) As for 
the second condition, suppose that one element of Q could be obtained 
from two different elements of (~, (qfixed, q3) and (qfixed, q4), where q3 # q4- 
That is, 

(ql, q2) = (qfixed +a ,  q3+a) (A3) 

(ql, q2) = (qfixed + a', q4 + a') (A4) 

Subtracting (A4) from (A3), we find 

qfixed + a = qnx,d + a' (A5) 

q3 + a = q4 + a '  (A6) 

from which we conclude q3 = q4, in contradiction to our assumption. So the 
second condition is also satisfied. 
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[We could not reach this conclusion here if the gauge group of  transla- 
tions did not act effectively, i.e., if there were some pairs of  points (q~, q2) 
left unchanged by nonzero transformations a ~ 0. This would be the case 
if, instead of translations, we had considered rotations (they leave the origin 
unchanged); it is also the case when considering diffeomorphisms of the 
loop, since uniform translations r--> r + const leave both gab (~r) and X ~" (~') 
unchanged. For a discussion of this more complicated situation, see Moore 
and Nelson (1986).] 

The main difference between the two mass-point system (ql, q2) with 
gauge group translations and the (gab(r), X ' ( r ) )  system with gauge group 
diffeomorphisms is that in the latter the space of "first entries" not related 
to each other by gauge transformations is not just a single point q~xed, but 
rather the one-parameter set of  fiducial metrics: 

" Q "  = (gab(r X"(r)) (A7) 

"(~" = (A, X~(r)) (A8) 

In the (q~, q2) system we could equally well have fixed the second entry 
rather than the first (or some combination such as the center of mass). In 
the (g@(r), X" (7 ) )  system we could in principle find a set of"Teichmul ler  
X ' s "  X " ( z ) ;  but gab(r) does not enter the action quadratically (it does not 
even enter as a polynomial!), so we would be at a loss as to how to perform 
the resulting path integral over all metrics. 
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